Keywords: LLMs, Multimodal, OCR, Exams
Abstract: Despite rapid advancements in multimodal large language models (MLLMs), their ability to process low-resource African languages in document-based visual question answering (VQA) tasks remains limited. This paper evaluates three state-of-the-art MLLMs—GPT-4o, Claude 3.5 Haiku, and Gemini-1.5 Pro—on WAEC/NECO standardized exam questions in Yoruba, Igbo, and Hausa. We curate a dataset of multiple-choice questions from exam images and compare model accuracies across two prompting strategies: (1) using English prompts for African language questions, and (2) using native-language prompts. While GPT-4o achieves over 90% accuracy for English, performance drops below 40% for African languages, highlighting severe data imbalance in model training. Notably, native-language prompting improves accuracy for most models, yet no system approaches human-level performance, which reaches over 50% in Yoruba, Igbo, and Hausa. These findings emphasize the need for diverse training data, fine-tuning, and dedicated benchmarks that address the linguistic intricacies of African languages in multimodal tasks, paving the way for more equitable and effective AI systems in education.
Submission Number: 4
Loading